设备特点:

2.4.1.1 设备结构紧凑,装置占地面积小。

由设备结构可知,干燥所需热量主要是由密集地排列于空心轴上的许多空心桨叶壁面提供,而夹套壁面的传热量只占少部分。所以单位体积设备的传热面大,可节省设备占地面积,减少基建投资。

2.4.1.2 热量利用率高。

干燥所需热量不是靠热气体提供,减少了热气体带走的热损失。由于设备结构紧凑,且辅助装置少,散热损失也减少。热量利用率可达 80%-90%。

2.4.1.3 楔形桨叶具有自净能力,可提高桨叶传热作用。

旋转桨叶的倾斜面和颗粒或粉末层的联合运动所产生的分散力,使附着于加热斜面上的物料易于自动地清除,使桨叶保持着高效的传热功能。另外,由于两轴桨叶反向旋转,交替地分段压缩(在两轴桨叶斜面相距最近时)和膨胀(在两轴桨叶面相距离最远时)斜面上的物料,使传热面附近的物料被激烈搅动,提高了传热效果。楔型桨叶式搅拌干燥器传热系数较高,为 85—350W/(M •K).

2.4.1.4 气体用量少,可相应的减少或省去部分辅助设备。

由于不需用气体来加热,因此极大地减少了干燥过程中气体用量。采用楔形桨叶式干燥器只需少量气体用于携带蒸发出湿分。气体用量很少,只须满足在干燥操作温度条件下,干燥系统不凝结露水。由于气体用量少,干燥器内气体流速低,被气体挟带出的粉尘少,干燥后系统的气体粉尘回收方便,可以缩小旋风分离器尺寸,省去或缩小布袋除尘器。气体加热器,鼓风机等规模都可缩小,节省设备投资。

2.4.1.5 物料适应性广,产品干燥均匀。

干燥器内设溢流堰,可根据物料性质和干燥条件,调节干燥器内物料滞留量。可使干燥器内物料滞留量达筒体容积的 70%—80%,增加物料的停留时间,以适应难干燥物料和高水分物料的干燥要求。此外,还可调节加料速度、轴的转速和热载体温度等,在几分钟与几小时之间任意选定物料停留时间。因此对于易干燥和不易干燥物料均适用。湿含量只有 0.1%,已有工业应用实例。另外,干燥器内虽有许多搅拌桨叶,物料混合均匀,但是,物料在干燥器内从加料口向出料口流动基本呈活塞流流动,停留时间分布窄,产品干燥均匀。

2.4.1.6 适用于多种干燥操作。

前已述及楔形桨叶式干燥可通过多种方法来调节干燥工艺条件,而且它的操作要比流化床干燥、气流干燥的操作容易控制,所以适用于多种操作。

本桨叶机 功 率:装机 75kW。

2.4.2 炒制:流化床

煅烧机:        

石膏流化煅烧机的床层状态属于鼓泡床,因此将这种炉子形象地称作“沸腾炉”。流化床煅烧部分为一个立式箱式容器在其底部装有一个气体分布板。目的是在停止

工作时支撑固体粉料不致漏粉,在工作时使气流从底部均匀地进入床层。在床层的上界面以上装有连续进料的投料机。在床层上界面处的炉壁上有溢流孔,用于出料。在床层内装有大量的加热管,管内的加热介质为饱和蒸汽或载热油,热量通过管壁传递给管外处于流态化的石膏粉,使石膏粉脱水分解。在煅烧部分上部,装有一个静电除尘器,气体离开流化床时带出来的少量粉尘,静电除尘器收集后自动返回流化床,已除尘的尾气由排风机抽出,排入大气。正常工作时,从沸腾炉底部鼓入空气,通过气体分布板进入流化床。鼓入的空气不需要很多,稍稍超过临界气速,使床层实现流态化即可。此时淹没在流化床中的加热管向物料传递大量的热量,使二水石膏粉达到脱水分解的温度,二水石膏就在流化床中脱去结晶水并变为蒸汽,这些蒸汽与炉底鼓入的空气混合在一起,通过床层向上运动。由于蒸汽量比鼓入的空气量多得多,所以整个鼓泡床的流态化主要是靠石膏脱水形成的蒸汽来实现的。由于在流化床中粉料激烈的翻滚、混合,所以在整个流化床中各处的物料温度和成分几乎是一致的。连续投入的生石膏粉, 一进入床层,几乎瞬间就与床层中大量热粉料混合均匀,在热粉料中迅速脱水分解。为了避免刚加入的生料未完成脱水过程就过早短路排出,设计时在炉子中加了一块隔板,将流化床分成大小两部分,两部分底部是连通的。生石膏粉先进入大的部分,在此脱掉大部分结晶水,然后通过下部的通道进入小的部分,在这里完成最终的脱水过程,再由床层上部自动溢流出炉。

石膏粉生产设备石膏砌块机石膏板生产线